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Abstract. Using a covariant Wigner function approach developed elsewhere, the excitation 
modes of a relativistic quantum plasma are obtained. With this technique, the derivation is 
quite similar to the usual derivation (i.e. non-quantum) and hence can be applied to more 
involved cases. 

In this paper the covariant Wigner function formalism developed elsewhere (Hakim 
1978) is applied to a rederivation of the dispersion relations of a relativistic quantum 
plasma. These relations have already been derived earlier by Tsytovich (1961) who 
used a semi-phenomenological treatment (see also Biskamp (1967) and Chin (1977)), 
by Jancovici (1962) who used a many-body formalism and considered the zero 
temperature case only, by Melrose (1972) who discussed some general properties, by 
Hakim and Heyvaerts (1978) who started from a BBGKY hierarchy where spin effects 
were neglected and, finally, by Delsante and Frankel (1978) who used a dielectric 
constant approach. Essentially, relativistic quantum plasmas do occur in astrophysics 
(electrons in white dwarfs, magnetosphere of pulsars, radiative era of the primeval 
universe, etc) and hence deserve particular studies. 

Here a relativistic quantum BBGKY hierarchy is given and then truncated to give a 
covariant quantum Vlasov-Hartree equation. Throughout this paper only an electron 
plasma embedded in a smooth positive neutralising background is considered. 

The dynamical equations describing the system are (i) the Dirac equations 

[ y .  (id-eA)-m]ll,=O 

& [ y .  (id+eA)+ m ]  = 0 

for the electron-positron field, and (ii) the Maxwell equations written as 

OA” = 47r?”, 

where j ”  is the four-current operator 

to which a gauge condition (see below) must be added. In the above equations the 
notation is standard (see e.g. Schweber 1962): the metric used has the signature +---, 
the velocity of light and Planck’s constant divided by 27r are equal to one, and e = - / e / .  
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The statistical description of the plasma is dealt with by using the following 
one-particle covariant Wigner function, 

1 
F ( x , p ) = ~  d4R exp(-ip. R ) ( & ( x + R / 2 ) O $ ( x - R / 2 ) ) ,  

(257) 
( 4 )  

and other quantities of interest such as ( 8 ( x ,  p ) A ” ( x ’ ) ) ,  ( 8 ( x ,  p )O8(x’ ,  p ’ ) ) ,  
( A ” ( x ) O A ” ’ ( X ’ ) ) ,  etc (in these last expressions 8 has the same definition as F in 
equation ( 4 )  except that the average value (. . .) =Tr(p.  . .) is not taken; 8 is a Wigner 
operator and p is the density operator). 

From F one can easily calculate the average value of one-particle operators (Hakim 
1978) such as the four-current (3.); for instance, one has (Hakim 1978) 

where Sp is the brace over spin indices. 
From Dirac’s equations (1) and the definition (4) one can easily derive operator 

equations for 8 that generate a BBGKY hierarchy (Hakim 1978) for the various 
statistical quantities of interest, F = ( E ) ,  (EOA) ,  ( 8 O A O A )  etc. Here, only’the first 
equations of the hierarchy are needed. They read 

b y .  6 + 2 ( y . ~ - m ) l F ( x , p )  

2e 
d4x‘ , d4p’ exp[-ip’ . ( x  - x ’ ) ] ( y  . 8 ( x ,  p - p ’ / 2 ) A ( x ’ ) )  . ( 6 a )  

~ ( x ,  p)€’iy. a - 2 ( y .  P - m)I 

-2e - (66) d4x’ .  d4p’ exp[-ip’ . ( x  -x’)](A(x’)  . p(x, p + p ’ / 2 ) y )  -521 
which must be solved simultaneously. In order to close the hierarchy the Hartree- 
Vlasov ansatz is used (it is briefly discussed below and in Hakim (1978)): 

(fib, p ) O A ( x ’ ) ) - F ( x ,  p )O(A(x’) ) .  (7) 

Doing so, we obtain a closed equation for F, quite similar to the usual Vlasov equation 
to which one must join the average value of equation ( 2 ) ,  i.e. 

i?(A@(x)) = 47re Sp d4p y@F(x ,  p ) ,  (8) 

where use has been made of equation ( 5 ) .  ( A ” )  is thus a classical field in this 
approximation and hence the Lorentz gauge condition 

d,(A@(x))  = 0 (9) 

can be used. 
In order to obtain the dispersion relations for electromagnetic waves propagating 

through the plasma, the above equations have-as usual-to be linearised about an 
equilibrium state, i.e. about 
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where Feq is derived in Hakim (1978) and where f e q (  p )  has been obtained in Hakim and 
Heyvaerts (1978)  as 

(in equation (12 )  U is the average four-velocity of the plasma and er is its chemical 
potential (its Fermi energy whenever its temperature T = P - l / k B  is zero, where k B  is 
Boltzmann’s constant)). Notice that the linearisation procedure 

is essentially equivalent to the random phase approximation as has been noted long ago 
(see e.g. Jancovici (1962)) .  Once they have been linearised and Fourier transformed 
equations (6) read respectively 

[ y  . ( p  - k / 2 )  - m]fi“’(k, p )  = e f f “ ’ ( k )  . yFeq(p + k / 2 )  ( 1 4 a )  

$“”(k ,p ) [y .  ( p + k / 2 ) - m ] = e d “ ’ ( k )  . F e q ( p - k / 2 ) .  y. (14b)  

Particular solutions of these last equations are easily found to be 

where use has been made of equation (11 )  and of the notation 

f eq (* )  E f e q ( p  * k / 2 )  (16 )  
and where the necessary ieterms have been omitted. The most general solutions of 
equations (14 )  are, respectively, of the general form 

( 1 7 a )  

(176)  

pcl’ = $Cl, 
+ [ Y .  ( p  - k / 2 )  + m l G ~ ( - ) ,  

$(2’ = f i b ”  + G 2 ( + ) [ y .  ( p  + k / 2 )  + m ] ,  

where the last terms of the right-hand sides of these equations represent the arbitrary 
solutions of the homogeneous equations ( 1 4 ) ;  in equations (17 )  G1 and G2 are arbitrary 
4 x 4 matrices that are functions of p and are respectively on the mass shells 

( p  - k/2)’= m 2  for i = 1 (18) 
The reason why GI( - ) ,  for instance, contains a a(-) factor can be seen by applying 

the operator [ y  . ( p  - k / 2 )  - m ]  to equation ( 1 7 a )  from the left.’The first term vanishes 
since is a solution while the second vanishes only if GI( - )  also contains a a(-) 
factor. 

and ( p  + k / 2 ) 2  = m2 for i = 2. 

From the necessary identity of equations ( 1 7 a )  and (17b) ,  one concludes that 
pc1, = $Ll) + fi‘bl’ 

[ y  . ( p  - k / 2 ) +  m ] y  . f f ‘ ’ ) ( k ) [ y .  ( p  + k / 2 )  + m ]  
8 m  k . p  
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where use has been made of the fact that 

( p f k / 2 ) 2  - m 2  = * 2  k . p when ( p F k / 2 ) 2  = m 2 ,  

valid only when both equations (18 )  hold. 
Defining the polarisation tensor IZ”(k) by 

47r.f;h) ( k )  n * ” ( k ) A ; ’ ( k ) ,  (20) 

where .ftl) ( k )  is the Fourier transform of the perturbed four-current (see equation ( 5 ) ) ,  

(21 )  A “ (1 )  4 ~ r . f ; ~ )  ( k )  = 4ne Sp [ d4py F (k ,  p ) ,  

one obtains 

I l” (k )  = - w ; K A F  -O;ghF - k 2 A ” ( k ) ( w ~ / 4 n e , ) l  

where use has been made of the following relations (see e.g. Landau and Lifschitz 
(1 95 9 ) ) :  

Sp(y”Y’”) = 4gAF 

SP(YhYFYY) = 0 

SP(Y Y Y Y ) - 4 ( g  g g g + g  g ). A P F U - AP F V -  A l r  P V  A u  PF 

In equations (22 )  we have set? (as in Hakim and Heyvaerts (1978))  

This last expression is nothing but the relativistic quantum form of the plasma 
frequency: as in the non-quantum but relativistic case (Hakim and Mangeney 1968, 
1971) it has nor its usual form w :  = 4 m e , e 2 / m ,  neq being the invariant equilibrium 
electron density. In equation (22 )  A A F ( k )  is the projector over the space orthogonal to 
k” 

A A F ( k ) E g A F  - k A k F / k 2 .  (27)  

Comparing now equation (22 )  with the expression calculated in Hakim and Hey- 
vaerts (1978) (where spin effects were neglected; equation (4 .20)) ,  one can see that they 
differ by the last term only and a naive dimensional analysis of the latter shows that it is 
negligible when 

Fermi momentumlenergy (degenerate case) 
Inverse Comptsn thermal wavelength (non-degenerate case). 

k < < p * =  

f In equations (24) and (25) the if-factors of the resonant denominator ( k .  p ) - ’  have been re-established: 
they correspond to the usual Landau prescription; h a result these equations acquire an imaginary part that is 
vanishing as long as the waves are superluminous. 
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This is the reason why, in the zero temperature case, we found (Hakim and Heyvaerts 
1978) anew Jancovici’s (1962) results. 

Using now the Lorentz gauge condition (9) under the form k . A“’ = 0, and also 
equations (24)-(26), the dispersion equations are obtained from 

[k2gA’” -IIA”(k)]Al”(k)  = 0 (28) 

and found to be 
2 2 

6J I=O -- 0; k 2 + ~  6 J P  K ” - L  
6 J 2  - w - k 2  4neq 

for transverse modes and 

for longitudinal modes. These equations are, of course, identical to the ones previously 
derived. Note also that k , l l ” ” ( k )  = 0, as it should be. 

At this point several remarks are in order. 
First, equations (29) and (30) reduce to the classical relativistic equations (Hakim 

and Mangeney 1968, 1971) when h+O: to see this, ( i )  neglect spin, i.e. I, (ii) suppress 
the contributions of the positrons and (iii) suppress the +1 of the Fermi factor in 
equation (12) (see Hakim and Heyvaerts (1978)); take the long wavelength limit. 

A second remark deals with the absence of vacuum contributions either in equation 
(22) or in equations (29) and (30): indeed, in the absence of matter feq(p) goes to zero. 
This is due to the fact that we have implicitly used a normal ordering of our field 
operators, thereby killing all vacuum contributions; furthermore this is also (Hakim 
1978) due to our Hartree-Vlasov ansatz (7). Actually, if we don’t omit the vacuum 
contribution to feq( p )  we have to replace feq( p )  (equation (12)) by its expression plus the 
vacuum Wigner function 

Inserting this last expression into equation (22), for instance, gives rise to the usual 
vacuum polarisation tensor at order e’. Notice that Fv,,(p) is given by an expression 
quite similar to that of Feq(p) (equation (11)); the calculation of fvac(p) is performed 
with pvac = lvac)(vac/; equation (3  1) expresses the fact that the Dirac ocean of negative 
energy electrons (i.e. the vacuum) is uniformly filled. In the approximation used in this 
paper the renormalisation procedure merely reduces to a simple replacement of the 
bare charge and the bare mass by their (finite) experimental values: such a circumstance 
(except, of course, for charge renormalisation) also occurs in the classical (i.e. non- 
quantum but relativistic) context (Hakim 1967). The vacuum polarisation tensor has to 
be renormalised in the usual way (see e.g. Schweber (1962)). 

Let us also notice that the above results could have been obtained by considering a 
quantised electron-positron field in the presence of an average self-consistent elec- 
tromagnetic field: instead of using Dirac’s equations (1) we would just have to use 
similar equations with A replaced by (A) ,  acting as an external field. However such a 
procedure (like the one considered in this paper) does not take radiative corrections 
into account. It is known (Schwinger 1951a, b, c) that, in the presence of an external 
field (A),  the wavefunction of an electron (positron) obeys a Dirac equation that takes 
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into account its self electromagnetic field (radiative corrections) through a mass 
operator M :  

[ y .  (ia-e(A))-MJ$=O (32a) 

M$ = M(x, x’ )g l / (x ’ )  d4x’. (32c) 

I,&. ( ia+e(A))+M] = 0 (32b) 

I 
For instance, at order e’ M(x ,  x ’ )  is given by (Schwinger 1951a, b, c) 

M(x,  x ’ )  = m8(x -x’)+ie2yG(x, x’)yD+(x -x‘) (33) 
where G(x, x’) is the Green function of the electron in the presence of the external field 
( A )  and D, is the photon propagator. Equations (32) lead to a modification (of order 
e*) to the relativistic quantum Vlasov-Hartree equation. Such a modification can also 
be obtained from the relativistic quantum BBGKY hierarchy by an expansion in powers 
of e’ (notice that, besides the usual plasma parameter, there also exist two other 
dimensionless parameters for a relativistic quantum plasma, i.e. mc2/kT and e 2 / h c ) .  
These modifications are studied in a subsequent paper (Hakim 1980, unpublished). 
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